Semi-supervised learning for automatic conceptual property extraction

نویسندگان

  • Colin Kelly
  • Barry Devereux
  • Anna Korhonen
چکیده

For a given concrete noun concept, humans are usually able to cite properties (e.g., elephant is animal, car has wheels) of that concept; cognitive psychologists have theorised that such properties are fundamental to understanding the abstract mental representation of concepts in the brain. Consequently, the ability to automatically extract such properties would be of enormous benefit to the field of experimental psychology. This paper investigates the use of semi-supervised learning and support vector machines to automatically extract concept-relation-feature triples from two large corpora (Wikipedia and UKWAC) for concrete noun concepts. Previous approaches have relied on manually-generated rules and hand-crafted resources such as WordNet; our method requires neither yet achieves better performance than these prior approaches, measured both by comparison with a property norm-derived gold standard as well as direct human evaluation. Our technique performs particularly well on extracting features relevant to a given concept, and suggests a number of promising areas for future focus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MSRA atT TRECVID 2008: High-Level Feature Extraction and Automatic Search

This paper describes the MSRA experiments for TRECVID 2008. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we representatively investigated the benefit of global and local low-level features by a variety of learning-based methods, including supervised and semi-supervised learning algorithms. For automatic search, we f...

متن کامل

MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search

This paper describes the MSRA-USTC-SJTU experiments for TRECVID 2007. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we investigated the benefit of unlabeled data by semi-supervised learning, and the multi-layer (ML) multi-instance (MI) relation embedded in video by MLMI kernel, as well as the correlations between con...

متن کامل

Semi-supervised Learning Approach for Automatic Emotional Expression Extraction from eBook Text

We have developed an approach for the automatic extraction of emotion expression from text data of ebooks, such as novels and short stories. The embedding of the extraction results as metadata allows a text-to-speech system to enable the expressive reading of these texts along with the selection of a dictionary of voices associated with emotions. As a text prefilter for the automatic extraction...

متن کامل

Semantic Relation Extraction Based on Semi-supervised Learning

Many tasks of information extraction or natural language processing have a property that the data naturally consist of several views—disjoint subsets of features. Specifically, a semantic relationship can be represented with some entity pairs or contexts surrounding the entity pairs. For example, the PersonBirthplace relation can be recognized from the entity pair view, such as (Albert Einstein...

متن کامل

Automatic Audio Tagging and Retrieval Using Semi-Surpervised Canonical Density Estimation

We apply SSCDE (semi-supervised canonical density estimation), a semi-supervised learning method based on topic modeling, to audio tagging and retrieval problems. SSCDE was originally proposed as an image annotaion and retireval method, but it can also be applied to audio data. The SSCDE method consists of two parts: 1) extraction of a low-dimentional latent space representing topics of sounds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012